Search results for "Chaos expansion"
showing 2 items of 2 documents
Simulation of BSDEs with jumps by Wiener Chaos Expansion
2016
International audience; We present an algorithm to solve BSDEs with jumps based on Wiener Chaos Expansion and Picard's iterations. This paper extends the results given in Briand-Labart (2014) to the case of BSDEs with jumps. We get a forward scheme where the conditional expectations are easily computed thanks to chaos decomposition formulas. Concerning the error, we derive explicit bounds with respect to the number of chaos, the discretization time step and the number of Monte Carlo simulations. We also present numerical experiments. We obtain very encouraging results in terms of speed and accuracy.
$L_2$-variation of L\'{e}vy driven BSDEs with non-smooth terminal conditions
2016
We consider the $L_2$-regularity of solutions to backward stochastic differential equations (BSDEs) with Lipschitz generators driven by a Brownian motion and a Poisson random measure associated with a L\'{e}vy process $(X_t)_{t\in[0,T]}$. The terminal condition may be a Borel function of finitely many increments of the L\'{e}vy process which is not necessarily Lipschitz but only satisfies a fractional smoothness condition. The results are obtained by investigating how the special structure appearing in the chaos expansion of the terminal condition is inherited by the solution to the BSDE.